SUMMARY REPORT
47 ASH STREET (FORMERLY 302 ASH STREET)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT
47 ASH STREET (FORMERLY 302 ASH STREET)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table of Contents

1.0	INTRODUC	TION1	l
1.1 1.2		ND INFORMATION	
2.0	SAMPLING	ACTIVITIES AND RESULTS	}
2.1 2.2		VAL AND SOIL SAMPLING	
3.0	PROPERTY	STATUS	ļ
4.0	REFERENC	ES	ļ
Table	1	Table Laboratory Analytical Results - Soil	
		Appendices	
Appen Appen Appen	dix B	Multi-Media Selection Process for LBMH UST Assesment Report Regulatory Correspondence	

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank

VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 47 Ash Street (Formerly 302 Ash Street). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 47 Ash Street (Formerly 302 Ash Street). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 302 Ash Street* (MCAS Beaufort, 2012). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On August 29, 2012, a single 280 gallon heating oil UST was removed from the concrete porch area adjacent to the driveway at 47 Ash Street (Formerly 302 Ash Street). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'9" bgs and a single soil sample was collected from that depth. The

sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 47 Ash Street (Formerly 302 Ash Street) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 47 Ash Street (Formerly 302 Ash Street). This NFA determination was obtained in a letter dated May 15, 2014. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

Marine Corps Air Station Beaufort, 2012. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 302 Ash Street, Laurel Bay Military Housing Area, October 2012.

South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Table

Table 1 Laboratory Analytical Results - Soil 47 Ash Street (Formerly 302 Ash Street) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Sample Collected 08/29/12
Volatile Organic Compounds Analyzed	by EPA Method 8260B (mg/kg)	
Benzene	0.003	ND
Ethylbenzene	1.15	ND
Naphthalene	0.036	ND
Toluene	0.627	ND
Xylenes, Total	13.01	ND
Semivolatile Organic Compounds Anal	yzed by EPA Method 8270D (mg/kg)	
Benzo(a)anthracene	0.66	0.112
Benzo(b)fluoranthene	0.66	0.119
Benzo(k)fluoranthene	0.66	0.0574
Chrysene	0.66	0.124
Dibenz(a,h)anthracene	0.66	ND

Notes:

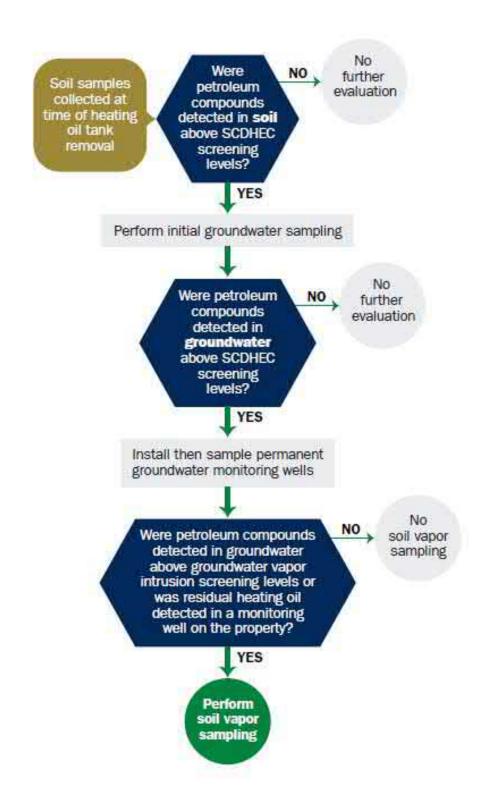
Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.


RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 2.0 (SCDHEC, April 2013).

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC)

Underground Storage Tank (UST) Assessment Report

. 24 255		
10 - 4 - 10 1 1 -		
II Date Received		
2 mile 200001100		
1 / 4 / 4 / 4 / 1 / 1 / 1 / 1 / 1 / 1 /		
197403804	the state of the s	
agr.		
100		
	(現在)	
lf .	786 (1963) 1477 F. C.	
	CALA TILL OLIVE	
ll.	State Use Only	
Date Received	Diditi DDI DIII,	

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	manding Officer Attn: NI	REAO (Craig Ehde)	
Owner Name (Corporation,	Individual, Public Agency, Other)		
P.O. Box 55001 Mailing Address			
Beaufort,	South Carolina	29904-5001	
City	State	Zip Code	
843	228-7317	Craig Ehde	
Area Code	Telephone Number	Contact Person	

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #
Laurel Bay Military Housing Area, Marine Corps Air Station, Beaufort, SC
Facility Name or Company Site Identifier
302 Ash Street, Laurel Bay Military Housing Area
Street Address or State Road (as applicable)
Beaufort, Beaufort
City County

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement
The petroleum release reported to DHEC on at Permit ID Number may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
If you answered YES to the above question, please complete the following information:
My policy provider is: The policy deductible is: The policy limit is:
If you have this type of insurance, please include a copy of the policy with this report.
IV. REQUEST FOR SUPERB FUNDING I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)
V. CERTIFICATION (To be signed by the UST owner)
I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.
Name (Type or print.)
Signature
To be completed by Notary Public:
Sworn before me this day of, 20
Sworn before the this day of, 20
(Name)

	VI. UST INFORMATION	302Ash		
P	roduct(ex. Gas, Kerosene)	Heating oil		
	Capacity(ex. 1k, 2k)	280 gal		
Α	.ge	Late 1950s		
C	Construction Material(ex. Steel, FRP)	Steel		
N	Month/Year of Last Use	Mid 1980s		
	Pepth (ft.) To Base of Tank	5'9"		
	pill Prevention Equipment Y/N	No		
C	Overfill Prevention Equipment Y/N	No		
N	Method of Closure Removed/Filled	Removed		
D	Date Tanks Removed/Filled	8/29/2012		
V	Visible Corrosion or Pitting Y/N	Yes		
V	isible Holes Y/N	Yes		
M	Method of disposal for any USTs removed from the UST 302Ash was removed from the gr			See
_	Attachment "A."	·		

VII. PIPING INFORMATION

	302Ash
	Steel
Construction Material(ex. Steel, FRP)	& Copper
Distance from UST to Dispenser	N/A
Number of Dispensers	N/A
Type of System Pressure or Suction	Suction
Was Piping Removed from the Ground? Y/N	No
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	No
Ασο	Late 1950s
Age	nace 1930s
If any corrosion, pitting, or holes were observed, or	<u> </u>
If any corrosion, pitting, or holes were observed, or	describe the location and extent for each piping ru
If any corrosion, pitting, or holes were observed, or	describe the location and extent for each piping ru
If any corrosion, pitting, or holes were observed, or Corrosion and pitting were found	describe the location and extent for each piping ru
If any corrosion, pitting, or holes were observed, or Corrosion and pitting were found	describe the location and extent for each piping ru
If any corrosion, pitting, or holes were observed, or Corrosion and pitting were found	describe the location and extent for each piping ru
If any corrosion, pitting, or holes were observed, or Corrosion and pitting were found	describe the location and extent for each piping ru d on the surface of the steel vent lines were sound.
Corrosion and pitting were found pipe. Copper supply and return	describe the location and extent for each piping rud on the surface of the steel vent lines were sound.
Corrosion and pitting were found pipe. Copper supply and return	describe the location and extent for each piping rud on the surface of the steel vent lines were sound. SIPTION AND HISTORY constructed of single wall steel
Corrosion and pitting were found pipe. Copper supply and return to the USTs at the residences are contents.	describe the location and extent for each piping ru d on the surface of the steel vent lines were sound. EIPTION AND HISTORY onstructed of single wall steel for heating. These USTs were
Corrosion and pitting were found pipe. Copper supply and return to the USTs at the residences are contained fuel oil to the contained fuel oil to th	describe the location and extent for each piping ru d on the surface of the steel vent lines were sound. EIPTION AND HISTORY onstructed of single wall steel for heating. These USTs were
Corrosion and pitting were found pipe. Copper supply and return to the USTs at the residences are contained fuel oil to the contained fuel oil to th	describe the location and extent for each piping ru d on the surface of the steel vent lines were sound. EIPTION AND HISTORY onstructed of single wall steel for heating. These USTs were
Corrosion and pitting were found pipe. Copper supply and return to the USTs at the residences are contained fuel oil to the contained fuel oil to th	describe the location and extent for each piping ru d on the surface of the steel vent lines were sound. EIPTION AND HISTORY onstructed of single wall steel for heating. These USTs were
Corrosion and pitting were found pipe. Copper supply and return to the USTs at the residences are contained fuel oil to the contained fuel oil to th	describe the location and extent for each piping ru d on the surface of the steel vent lines were sound. EIPTION AND HISTORY onstructed of single wall steel for heating. These USTs were
Corrosion and pitting were found pipe. Copper supply and return to the USTs at the residences are contained fuel oil to the contained fuel oil to th	describe the location and extent for each piping ru d on the surface of the steel vent lines were sound. EIPTION AND HISTORY onstructed of single wall steel for heating. These USTs were

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		Х	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?If yes, indicate location on site map and describe the odor (strong, mild, etc.)		Х	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		Х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		Х	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		Х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

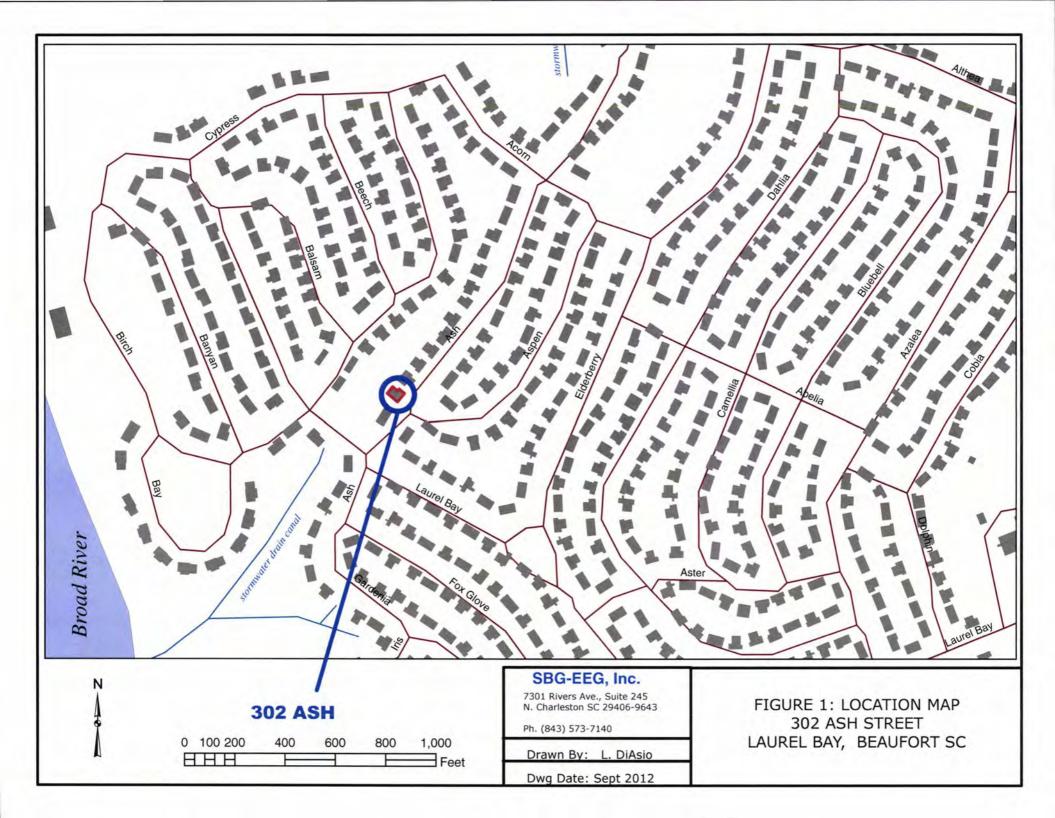
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
302Ash	Excav at fill end	Soil	Sandy	5'9"	8/29/12 1400 hrs	P. Shaw	
8							
9							
10				:			
11							
12						ž	
13							l
14							
15							
16							
17							
18							
19							
20							

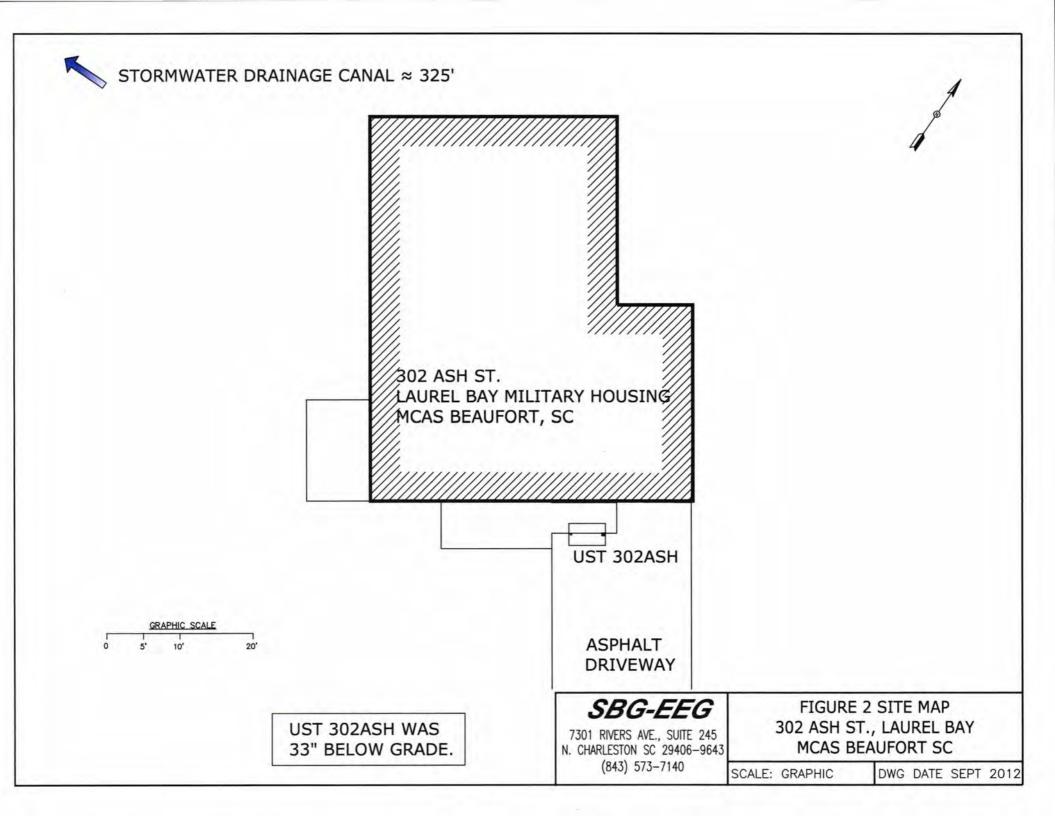
^{* =} Depth Below the Surrounding Land Surface

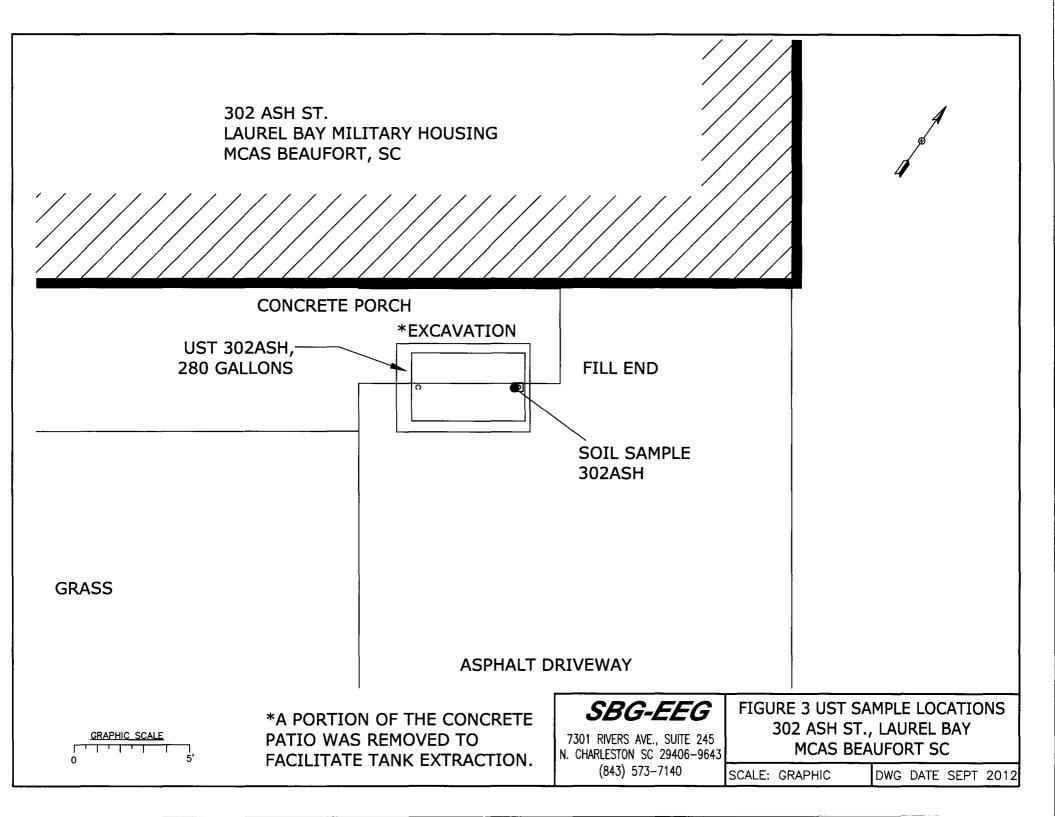
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	*stormwater draina	ge ca:	nal
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		X
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, electricable & fiber o		
	If yes, indicate the type of utility, distance, and direction on the site map.	-	
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 302Ash.

Picture 2: UST 302Ash excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

Effici the son analytical data	t for cach son both.	ig for an	ic table o	ciow and	on the for	nowing page
CoC UST	302Ash					
Benzene	ND	-				
Toluene	ND					
Ethylbenzene	ND					
Xylenes	ND					
Naphthalene	ND					
Benzo (a) anthracene	0.112 mg/kg					
Benzo (b) fluoranthene	0.119 mg/kg					
Benzo (k) fluoranthene	0.0574 mg/kg					
Chrysene	0.124 mg/kg					
Dibenz (a, h) anthracene	ND					
TPH (EPA 3550)						
CoC						
Benzene						:
Toluene						
Ethylbenzene						
Xylenes						
Naphthalene						
Benzo (a) anthracene						
Benzo (b) fluoranthene						
Benzo (k) fluoranthene						
Chrysene						
Dibenz (a, h) anthracene						
TPH (EPA 3550)						

SUMMARY OF ANALYSIS RESULTS (cont'd)
Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL	W-1		W -3	
			W-2		W -4
	(µg/l)			<u> </u>	
Free Product	None				:
Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-5630-1

TestAmerica Sample Delivery Group: 1063 Client Project/Site: Laurel Bay Housing

For:

Environmental Enterprise Group 10179 Highway 78 Ladson, South Carolina 29456

Attn: Mr. Tom McElwee

Kuth Haye

Authorized for release by: 9/13/2012 8:46:05 PM

Ken Hayes Project Manager I

ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

over Page	1
able of Contents	2
ample Summary	3
ase Narrative	4
efinitions	5
lient Sample Results	6
C Sample Results	
C Association	12
hronicle	13
ethod Summary	14
ertification Summary	15
hain of Custody	16
eceipt Checklists	18

Sample Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-5630-1	302 Ash	Solid	08/29/12 14:00	09/05/12 08:20
490-5630-2	304 Ash	Solid	08/29/12 12:45	09/05/12 08:20

Case Narrative

Client: Environmental Enterprise Group

TestAmerica Job ID: 490-5630-1 Project/Site: Laurel Bay Housing SDG: 1063

Job ID: 490-5630-1

Laboratory: TestAmerica Nashville

Narrative

Joh Narrative 490-5630-1

Comments

No additional comments.

Receipt

The samples were received on 9/5/2012 8:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.2° C.

GC/MS VOA

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 304 Ash (490-5630-2). Evidence of matrix interference is present; However, re-extraction and/or re-analysis was required for multiple compounds being over the calibration limit.

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 17848 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260B: The method blank for batch 19243 contained Xylenes above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 19243. LCS/LCSD was performed for batch precision.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 19243.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270D: The matrix spike / matrix spike duplicate (MS/MSD) percent recoveries and %RPD for batch 17856 were outside control limits; therefore, they were not reported. LCS recovery was in range.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Environmental Enterprise Group

TestAmerica Job ID: 490-5630-1 Project/Site: Laurel Bay Housing SDG: 1063

Qualifiers GC/MS VOA

Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
F	MS or MSD exceeds the control limits	
×	Surrogate is outside control limits	
В	Compound was found in the blank and sample.	

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
*	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

Client Sample ID: 302 Ash

Percent Solids

Date Collected: 08/29/12 14:00 Date Received: 09/05/12 08:20 Lab Sample ID: 490-5630-1

Matrix: Solid Percent Solids: 79.9

Date Received. 09/03/12 06.20								Percent Son	us. 19.9
Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.00198	0.000663	mg/Kg	¢	09/05/12 14:30	09/06/12 19:00	
Ethylbenzene	ND		0.00198	0.000663	mg/Kg	-0	09/05/12 14:30	09/06/12 19:00	
Naphthalene	ND		0.00495	0.00168	mg/Kg	**	09/05/12 14:30	09/06/12 19:00	13
Toluene	ND		0.00198	0.000732	mg/Kg	¢	09/05/12 14:30	09/06/12 19:00	
Xylenes, Total	ND		0.00495	0.000663	mg/Kg	-0	09/05/12 14:30	09/06/12 19:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 130				09/05/12 14:30	09/06/12 19:00	
4-Bromofluorobenzene (Surr)	94		70 - 130				09/05/12 14:30	09/06/12 19:00	10.5
Dibromofluoromethane (Surr)	100		70 - 130				09/05/12 14:30	09/06/12 19:00	
Toluene-d8 (Surr)	92		70 - 130				09/05/12 14:30	09/06/12 19:00	1
Method: 8270D - Semivolatile	Organic Compou	inds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.0724	J	0.0835	0.0125	mg/Kg	Ø	09/06/12 07:07	09/07/12 17:36	1
Acenaphthylene	0.0587	J	0.0835	0.0112	mg/Kg	0	09/06/12 07:07	09/07/12 17:36	1
Anthracene	0.0496	J	0.0835	0.0112	mg/Kg	42	09/06/12 07:07	09/07/12 17:36	
Benzo[a]anthracene	0.112		0.0835	0.0187	mg/Kg	O	09/06/12 07:07	09/07/12 17:36	
Benzo[a]pyrene	0.0790	J	0.0835	0.0149	mg/Kg	**	09/06/12 07:07	09/07/12 17:36	1
Benzo[b]fluoranthene	0.119		0.0835	0.0149	mg/Kg	0	09/06/12 07:07	09/07/12 17:36	1
Benzo[g,h,i]perylene	0.0568	J	0.0835	0.0112	mg/Kg	0	09/06/12 07:07	09/07/12 17:36	- 1
Benzo[k]fluoranthene	0.0574	J	0.0835	0.0174	mg/Kg	40-	09/06/12 07:07	09/07/12 17:36	
Pyrene	0.314		0.0835	0.0149	mg/Kg	*	09/06/12 07:07	09/07/12 17:36	1
Phenanthrene	0.391		0.0835	0.0112	mg/Kg	\$	09/06/12 07:07	09/07/12 17:36	1
Chrysene	0.124		0.0835	0.0112	mg/Kg	0	09/06/12 07:07	09/07/12 17:36	1
Dibenz(a,h)anthracene	ND		0.0835	0.00872	mg/Kg	**	09/06/12 07:07	09/07/12 17:36	1
Fluoranthene	0.191		0.0835	0.0112	mg/Kg	0	09/06/12 07:07	09/07/12 17:36	1
Fluorene	0.155		0.0835	0.0149	mg/Kg	0	09/06/12 07:07	09/07/12 17:36	1
Indeno[1,2,3-cd]pyrene	0.0485	J	0.0835	0.0125	mg/Kg	O	09/06/12 07:07	09/07/12 17:36	1
Naphthalene	ND		0.0835	0.0112	mg/Kg	0	09/06/12 07:07	09/07/12 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	62		29 - 120				09/06/12 07:07	09/07/12 17:36	1
Terphenyl-d14 (Surr)	80		13 - 120				09/06/12 07:07	09/07/12 17:36	1
Nitrobenzene-d5 (Surr)	57		27 - 120				09/06/12 07:07	09/07/12 17:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

09/05/12 13:54

0.10

0.10 %

Client Sample Results

Client: Environmental Enterprise Group

Project/Site: Laurel Bay Housing

Date Received: 09/05/12 08:20

Percent Solids

TestAmerica Job ID: 490-5630-1

Client Sample ID: 304 Ash Lab Sample ID: 490-5630-2 Date Collected: 08/29/12 12:45

Matrix: Solid Percent Solids: 78.9

SDG: 1063

Mathadi 9260B Valatila Cara	mia Cammana da	(CC(MC)							
Method: 8260B - Volatile Orga Analyte	to the second second second	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.000861	J	0.00200	0.000671	mg/Kg	Ø	09/05/12 14:30	09/06/12 19:32	
Ethylbenzene	0.102		0.00200	0.000671	mg/Kg	Ø	09/05/12 14:30	09/06/12 19:32	
Naphthalene	2.27		0.308	0.105	mg/Kg	400	09/05/12 14:36	09/12/12 12:38	
Toluene	0.00237		0.00200	0.000741	mg/Kg	*	09/05/12 14:30	09/06/12 19:32	
Xylenes, Total	1.37	В	0.308	0.0419	mg/Kg	0	09/05/12 14:36	09/12/12 12:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	100		70 - 130				09/05/12 14:30	09/06/12 19:32	
1,2-Dichloroethane-d4 (Surr)	87		70 - 130				09/05/12 14:36	09/12/12 12:38	
4-Bromofluorobenzene (Surr)	158	X	70 - 130				09/05/12 14:30	09/06/12 19:32	
4-Bromofluorobenzene (Surr)	101		70 - 130				09/05/12 14:36	09/12/12 12:38	
Dibromofluoromethane (Surr)	99		70 - 130				09/05/12 14:30	09/06/12 19:32	
Dibromofluoromethane (Surr)	81		70 - 130				09/05/12 14:36	09/12/12 12:38	
Toluene-d8 (Surr)	148	X	70 - 130				09/05/12 14:30	09/06/12 19:32	
Toluene-d8 (Surr)	94		70 - 130				09/05/12 14:36	09/12/12 12:38	
Method: 8270D - Semivolatile									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.228		0.0844	0.0126		***	09/06/12 07:07	09/07/12 18:40	
Acenaphthylene	0.119		0.0844	0.0113		0	09/06/12 07:07	09/07/12 18:40	
Anthracene	0.369		0.0844		mg/Kg	*	09/06/12 07:07	09/07/12 18:40	
Benzo[a]anthracene	0.733		0.0844	0.0189	mg/Kg	*	09/06/12 07:07	09/07/12 18:40	
Benzo[a]pyrene	0.281		0.0844	0.0151	mg/Kg	**	09/06/12 07:07	09/07/12 18:40	
Benzo[b]fluoranthene	0.467		0.0844	0.0151	mg/Kg	*	09/06/12 07:07	09/07/12 18:40	
Benzo[g,h,i]perylene	0.0858		0.0844	0.0113	mg/Kg	**	09/06/12 07:07	09/07/12 18:40	
Benzo[k]fluoranthene	0.203		0.0844	0.0176	mg/Kg	101	09/06/12 07:07	09/07/12 18:40	
Pyrene	1.52		0.0844	0.0151	mg/Kg	0	09/06/12 07:07	09/07/12 18:40	
Phenanthrene	2.07		0.0844	0.0113	mg/Kg	*	09/06/12 07:07	09/07/12 18:40	
Chrysene	0.665		0.0844	0.0113	mg/Kg	0	09/06/12 07:07	09/07/12 18:40	
Dibenz(a,h)anthracene	ND		0.0844	0.00881	mg/Kg	₩.	09/06/12 07:07	09/07/12 18:40	
Fluoranthene	1.84		0.0844	0.0113	mg/Kg	0	09/06/12 07:07	09/07/12 18:40	
Fluorene	0.579		0.0844	0.0151	mg/Kg	\$	09/06/12 07:07	09/07/12 18:40	
Indeno[1,2,3-cd]pyrene	0.0891		0.0844	0.0126	mg/Kg	0	09/06/12 07:07	09/07/12 18:40	
Naphthalene	0.432		0.0844	0.0113	mg/Kg	Ċ.	09/06/12 07:07	09/07/12 18:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	- 57		29 - 120				09/06/12 07:07	09/07/12 18:40	
Terphenyl-d14 (Surr)	74		13 - 120				09/06/12 07:07	09/07/12 18:40	
Nitrobenzene-d5 (Surr)	53		27 - 120				09/06/12 07:07	09/07/12 18:40	
General Chemistry	Pasult	Qualifier	RL	DI	Unit	D	Prepared	Analyzed	Dil Fa
niidiy te	Result	Quamier	NL.	KL	Jille	U	riepaieu	Allalyzeu	Dii Fa

09/05/12 13:54

0.10

79

0.10 %

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 490-5523-A-10-C MS

Matrix: Solid

Analysis Batch: 17848

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 17644

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.00394		0.0506	0.02388		mg/Kg	ø	39	31 - 143
Ethylbenzene	0.00123	J	0.0506	0.01106	F	mg/Kg	0	19	23 - 161
Naphthalene	ND		0.0506	0.002868	JF	mg/Kg	- 22-	6	10 - 176
Toluene	0.00418		0.0506	0.01531	F	mg/Kg	335	22	30 - 155
Xylenes, Total	0.00152	J	0.152	0.02539	F	mg/Kg	\$	16	25 - 162

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 130
4-Bromofluorobenzene (Surr)	93		70 - 130
Dibromofluoromethane (Surr)	101		70 - 130
Toluene-d8 (Surr)	92		70 - 130

Lab Sample ID: 490-5523-A-10-D MSD

Matrix: Solid

Analysis Batch: 17848

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 17644

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.00394		0.0479	0.03308		mg/Kg	*	61	31 - 143	32	50
Ethylbenzene	0.00123	J	0.0479	0.01642		mg/Kg	0	32	23 - 161	39	50
Naphthalene	ND		0.0479	0.004168	JF	mg/Kg	**	9	10 - 176	37	50
Toluene	0.00418		0.0479	0.02317		mg/Kg	0	40	30 - 155	41	50
Xylenes, Total	0.00152	J	0.144	0.04061		mg/Kg	章	27	25 - 162	46	50

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
Toluene-d8 (Surr)	94		70 - 130

Lab Sample ID: MB 490-17848/6

Matrix: Solid

Analysis Batch: 17848

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			09/06/12 13:14	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			09/06/12 13:14	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			09/06/12 13:14	1
Toluene	ND		0.00200	0.000740	mg/Kg			09/06/12 13:14	1
Xylenes, Total	ND		0.00500	0.000670	mg/Kg			09/06/12 13:14	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	70 - 130		09/06/12 13:14	1
4-Bromofluorobenzene (Surr)	96	70 - 130		09/06/12 13:14	1
Dibromofluoromethane (Surr)	99	70 - 130		09/06/12 13:14	1
Toluene-d8 (Surr)	93	70 - 130		09/06/12 13:14	1

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-17848/3

Matrix: Solid

Analysis Batch: 17848

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.05887		mg/Kg		118	75 - 127
Ethylbenzene	0.0500	0.05471		mg/Kg		109	80 - 134
Naphthalene	0.0500	0.05185		mg/Kg		104	69 - 150
Toluene	0.0500	0.05348		mg/Kg		107	80 - 132
Xylenes, Total	0.150	0.1645		mg/Kg		110	80 - 137

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130
Dibromofluoromethane (Surr)	101		70 - 130
Toluene-d8 (Surr)	89		70 - 130

Lab Sample ID: LCSD 490-17848/4

Matrix: Solid

Analysis Batch: 17848

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD LCSD				%Rec.		RPD
Analyte	Added	Result Qualif	ier Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.05618	mg/Kg		112	75 - 127	5	50
Ethylbenzene	0.0500	0.05183	mg/Kg		104	80 - 134	5	50
Naphthalene	0.0500	0.04879	mg/Kg		98	69 - 150	6	50
Toluene	0.0500	0.05085	mg/Kg		102	80 - 132	5	50
Xylenes, Total	0.150	0.1542	mg/Kg		103	80 - 137	6	50

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
Toluene-d8 (Surr)	94		70 - 130

Lab Sample ID: MB 490-19243/7

Matrix: Solid

Analysis Batch: 19243

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0340	mg/Kg			09/12/12 12:08	1
Ethylbenzene	ND		0.100	0.0340	mg/Kg			09/12/12 12:08	1
Naphthalene	ND		0.250	0.0850	mg/Kg			09/12/12 12:08	1
Toluene	ND		0.100	0.0370	mg/Kg			09/12/12 12:08	1
Xylenes, Total	0.04278	J	0.250	0.0340	mg/Kg			09/12/12 12:08	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130		09/12/12 12:08	1
4-Bromofluorobenzene (Surr)	104		70 - 130		09/12/12 12:08	1
Dibromofluoromethane (Surr)	80		70 - 130		09/12/12 12:08	1
Toluene-d8 (Surr)	94		70 - 130		09/12/12 12:08	1

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-19243/3

Matrix: Solid

Analysis Batch: 19243

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.05126		mg/Kg		103	75 - 127
Ethylbenzene	0.0500	0.05601		mg/Kg		112	80 - 134
Naphthalene	0.0500	0.06030		mg/Kg		121	69 - 150
Toluene	0.0500	0.04744		mg/Kg		95	80 - 132
Xylenes, Total	0.150	0.1655		mg/Kg		110	80 - 137

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130
Dibromofluoromethane (Surr)	93		70 - 130
Toluene-d8 (Surr)	89		70 - 130

Lab Sample ID: LCSD 490-19243/4

Matrix: Solid

Analysis Batch: 19243

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.05166		mg/Kg		103	75 - 127	1	50
Ethylbenzene	0.0500	0.05648		mg/Kg		113	80 - 134	1	50
Naphthalene	0.0500	0.06217		mg/Kg		124	69 - 150	3	50
Toluene	0.0500	0.04900		mg/Kg		98	80 - 132	3	50
Xylenes, Total	0.150	0.1680		mg/Kg		112	80 - 137	2	50

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	108		70 - 130
Dibromofluoromethane (Surr)	92		70 - 130
Toluene-d8 (Surr)	90		70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-17856/1-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 18351								Prep Batch	n: 17856
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Anthracene	ND		0.0670	0.00900	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		09/06/12 07:07	09/07/12 17:15	- 1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		09/06/12 07:07	09/07/12 17:15	.1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		09/06/12 07:07	09/07/12 17:15	-1
Pyrene	ND		0.0670	0.0120	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Chrysene	ND		0.0670	0.00900	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		09/06/12 07:07	09/07/12 17:15	.1

TestAmerica Nashville 9/13/2012

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-17856/1-A

Matrix: Solid

Analysis Batch: 18351

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 17856

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		0.0670	0.0120	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		09/06/12 07:07	09/07/12 17:15	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		09/06/12 07:07	09/07/12 17:15	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	52	29 - 120	09/06/12 07:07	09/07/12 17:15	1
Terphenyl-d14 (Surr)	76	13 - 120	09/06/12 07:07	09/07/12 17:15	1
Nitrobenzene-d5 (Surr)	50	27 - 120	09/06/12 07:07	09/07/12 17:15	1

Lab Sample ID: LCS 490-17856/2-A

Matrix: Solid

Analysis Batch: 18351

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 17856

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	1.043		mg/Kg		63	38 - 120
Anthracene	1.67	1.066		mg/Kg		64	46 - 124
Benzo[a]anthracene	1.67	1.023		mg/Kg		61	45 - 120
Benzo[a]pyrene	1.67	1.082		mg/Kg		65	45 - 120
Benzo[b]fluoranthene	1.67	0.9871		mg/Kg		59	42 - 120
Benzo[g,h,i]perylene	1.67	0.9472		mg/Kg		57	38 - 120
Benzo[k]fluoranthene	1.67	1.062		mg/Kg		64	42 - 120
Pyrene	1.67	1.062		mg/Kg		64	43 - 120
Phenanthrene	1.67	0.9924		mg/Kg		60	45 - 120
Chrysene	1.67	1.044		mg/Kg		63	43 - 120
Dibenz(a,h)anthracene	1.67	0.8675		mg/Kg		52	32 - 128
Fluoranthene	1.67	0.9947		mg/Kg		60	46 - 120
Fluorene	1.67	1.004		mg/Kg		60	42 - 120
Indeno[1,2,3-cd]pyrene	1.67	0.9313		mg/Kg		56	41 - 121
Naphthalene	1.67	1.054		mg/Kg		63	32 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	46		29 - 120
Terphenyl-d14 (Surr)	64		13 - 120
Nitrobenzene-d5 (Surr)	45		27 - 120

Method: Moisture - Percent Moisture

Lab Sample ID: 490-5523-B-1 DU

Matrix: Solid

Analysis Batch: 17581

Chefit Gample ID. Duplicate
Prep Type: Total/NA

Client Sample ID: Dunlicate

QC Association Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

GC/MS VOA

Pre	p	Ba	tch	1: 1	17	644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5523-A-10-C MS	Matrix Spike	Total/NA	Solid	5035	
490-5523-A-10-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 17758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5630-1	302 Ash	Total/NA	Solid	5035	
490-5630-2	304 Ash	Total/NA	Solid	5035	

Prep Batch: 17763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5630-2	304 Ash	Total/NA	Solid	5035	

Analysis Batch: 17848

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5523-A-10-C MS	Matrix Spike	Total/NA	Solid	8260B	17644
490-5523-A-10-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	17644
490-5630-1	302 Ash	Total/NA	Solid	8260B	17758
490-5630-2	304 Ash	Total/NA	Solid	8260B	17758
LCS 490-17848/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-17848/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-17848/6	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 19243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5630-2	304 Ash	Total/NA	Solid	8260B	17763
LCS 490-19243/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-19243/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-19243/7	Method Blank	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 17856

MB 490-17856/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5630-1	302 Ash	Total/NA	Solid	3550C	
490-5630-2	304 Ash	Total/NA	Solid	3550C	
LCS 490-17856/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Total/NA

Solid

3550C

Analysis Batch: 18351

Method Blank

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5630-1	302 Ash	Total/NA	Solid	8270D	17856
490-5630-2	304 Ash	Total/NA	Solid	8270D	17856
LCS 490-17856/2-A	Lab Control Sample	Total/NA	Solid	8270D	17856
MB 490-17856/1-A	Method Blank	Total/NA	Solid	8270D	17856

General Chemistry

Analysis Batch: 17581

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5523-B-1 DU	Duplicate	Total/NA	Solid	Moisture	
490-5630-1	302 Ash	Total/NA	Solid	Moisture	
490-5630-2	304 Ash	Total/NA	Solid	Moisture	

Lab Chronicle

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

Lab Sample ID: 490-5630-1

SDG: 1063

Client Sample ID: 302 Ash

Date Collected: 08/29/12 14:00

Matrix: Solid

Date Received: 09/05/12 08:20

Percent	Solius:	19.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			17758	09/05/12 14:30	TP	TAL NSH
Total/NA	Analysis	8260B		1	17848	09/06/12 19:00	AF	TAL NSH
Total/NA	Prep	3550C			17856	09/06/12 07:07	AK	TAL NSH
Total/NA	Analysis	8270D		1	18351	09/07/12 17:36	WS	TAL NSH
Total/NA	Analysis	Moisture		1	17581	09/05/12 13:54	RS	TAL NSH

Client Sample ID: 304 Ash

Date Collected: 08/29/12 12:45

Date Received: 09/05/12 08:20

Lab Sample ID: 490-5630-2

Matrix: Solid Percent Solids: 78.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			17758	09/05/12 14:30	TP	TAL NSH
Total/NA	Analysis	8260B		1	17848	09/06/12 19:32	AF	TAL NSH
Total/NA	Prep	5035			17763	09/05/12 14:36	TP	TAL NSH
Total/NA	Analysis	8260B		1	19243	09/12/12 12:38	AF	TAL NSH
Total/NA	Prep	3550C			17856	09/06/12 07:07	AK	TAL NSH
Total/NA	Analysis	8270D		1	18351	09/07/12 18:40	WS	TAL NSH
Total/NA	Analysis	Moisture		1	17581	09/05/12 13:54	RS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

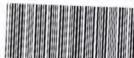
TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-5630-1

SDG: 1063


Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
	ACIL		393	10-30-12	
A2LA	ISO/IEC 17025		0453.07 12-31-13		
Alabama	State Program	4	41150	05-31-13	
Naska (UST)	State Program	10	UST-087	07-24-13	
Arizona	State Program	9	AZ0473	05-05-13	
Arkansas DEQ	State Program	6	88-0737	04-25-13	
California	NELAC	9	1168CA	10-31-12	
Canadian Assoc Lab Accred (CALA)	Canada		3744	03-08-14	
Colorado	State Program	8	N/A	02-28-13	
Connecticut	State Program	1	PH-0220	12-31-13	
Florida	NELAC	4	E87358	06-30-13	
llinois	NELAC	5	200010	12-09-12	
owa	State Program	7	131	05-01-14	
Kansas	NELAC	7	E-10229	10-31-12	
Kentucky	State Program	4	90038	12-31-12	
Kentucky (UST)	State Program	4	19	09-15-13	
ouisiana	NELAC	6	LA110014	12-31-12	
Louisiana	NELAC	6	30613	06-30-13	
Maryland	State Program	3	316	03-31-13	
Massachusetts	State Program	1	M-TN032	06-30-13	
Minnesota	NELAC	5	047-999-345	12-31-12	
Mississippi	State Program	4	N/A	06-30-13	
Montana (UST)	State Program	8	NA	01-01-15	
Nevada	State Program	9	TN00032	09-30-13	
New Hampshire	NELAC	1	2963	10-09-12	
New Jersey	NELAC	2	TN965	06-30-13	
New York	NELAC	2	11342	04-01-13	
North Carolina DENR	State Program	4	387	12-31-12	
North Dakota	State Program	8	R-146	06-30-13	
Ohio VAP	State Program	5	CL0033	01-19-14	
Oklahoma	State Program	6	9412	08-31-13	
Oregon	NELAC	10	TN200001	04-30-13	
Pennsylvania	NELAC	3	68-00585	06-30-13	
Rhode Island	State Program	1	LAO00268	12-30-12	
South Carolina	State Program	4	84009 (001)	02-28-13	
South Carolina	State Program	4	84009 (002)	02-23-14	
Tennessee	State Program	4	2008	02-23-14	
Texas	NELAC	6	T104704077-09-TX	08-31-13	
JSDA	Federal	~	S-48469	11-02-13	
Jtah	NELAC	8	TAN	06-30-13	
/irginia	NELAC	3	460152	06-30-13	
Vashington	State Program	10	C789	07-19-13	
West Virginia DEP	State Program	3	219	02-28-13	
Visconsin	State Program	5	998020430	08-31-13	
Nyoming (UST)	A2LA	8	453.07	12-31-13	

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 9/5/2012 @ 8:20 562 1. Tracking # (last 4 digits, FedEx) IR Gun ID 17960357 Courier: FEDEX 2. Temperature of rep. sample or temp blank when opened: Degrees Celsius 3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES...NO.NA YES...NO...NA 4. Were custody seals on outside of cooler? If yes, how many and where: YES...NO...NA 5. Were the seals intact, signed, and dated correctly? YES...NO...NA 6. Were custody papers inside cooler? I certify that I opened the cooler and answered questions 1-6 (intial) and Intact 7. Were custody seals on containers: YES NO YES...NO. Were these signed and dated correctly? YES...NO.. (NA) 8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: (Ice) Ice-pack Ice (direct contact) Other None 10. Did all containers arrive in good condition (unbroken)? YES .. NO ... NA 11. Were all container labels complete (#, date, signed, pres., etc)? ESI..NO...NA 12. Did all container labels and tags agree with custody papers? MES .. NO ... NA 13a. Were VOA vials received? (ES).NO...NA b. Was there any observable headspace present in any VOA vial? YES...NO.(NA) 14. Was there a Trip Blank in this cooler? YES. (NO).NA If multiple coolers, sequence #_ I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YES...NO. NA b. Did the bottle labels indicate that the correct preservatives were used MES .. NO ... NA YES...NO..NA 16. Was residual chlorine present? (W) Lertify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) (YES)..NO...NA 17. Were custody papers properly filled out (ink, signed, etc)? (ES)..NO...NA 18. Did you sign the custody papers in the appropriate place? VES ... NO ... NA 19. Were correct containers used for the analysis requested? (ES).NO...NA 20. Was sufficient amount of sample sent in each container? I certify that I entered this project into LIMS and answered questions 17-20 (intial)

I certify that I attached a label with the unique LIMS number to each container (intial)

21. Were there Non-Conformance issues at login? YES. NO Was a PIPE generated? YES. NO.#

(W)

Special Instructions: THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN 37204 9 888 FIS N Client Name/Account #: EEG - SBG # 2449 Sampler Name: (Print) Telephone Number: 843.412.2097 Sampler Signature: Project Manager: Tom McElwee email: mcelwee@eeginc.net City/State/Zip: Ladson, SC 29456 Address: 10179 Highway 78 8/30/12 2/12/12 Date Sampled 1400 Nashville Division 1245 Time Sampled No. of Containers Shipped Time Grab 200 Commen Composite Field Filtered Fax No.: 843-879-040 124 Ice Method of Shipment: HNO₃ (Red Label) Phone: 615-726-0177 Toll Free: 800-765-0980 Fax: 615-726-3404 NaOH (Orange Label) الم H₂SO₄ Plastic (Yellow Label) Wastewater 9.5.12 Drinking Water Date Date Sludge Sol FEDEX Other (apacify): 88 TA Quote #: Project ID: Laurel Bay Housing Project Site State: SC Time Time Project #: BTEX + Napth - 8260E PO# PAH - 8270D To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes? **Laboratory Comments:** VOCs Free of Headspace? Temperature Upon Receipt: Analyze For. Compliance Monitoring? Enforcement Action? 1.2. Yes Yes 3 0 4 No RUSH TAT (Pre-Schedule No

5630

Login Sample Receipt Checklist

Client: Environmental Enterprise Group

Job Number: 490-5630-1

SDG Number: 1063

List Source: TestAmerica Nashville

Login Number: 5630 List Number: 1

Creator: McBride, Mike

oreator. McDirde, Mine		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2°c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 302Ash; 302 Ash Street, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANK	SIZE (GAL)		
Steel	280		

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

7.2 LDuce / 9/20/12 (Name) (Date)

Appendix C Regulatory Correspondence

Catherine B. Templeton, Director

Prograting and presering the health of the public and the environment

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

Craig Ehde (via email)

Catherine B. Templeton, Director

Promosting and protecting the health of the public and the environment

Attachment to:

Krieg to Drawdy Subject: NFA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks)

219 Balsam 508 Laurel Bay 260 Beech Tank 1 510 Laurel Bay 260 Beech Tank 2 523 Laurel Bay 287 Birch 525 Laurel Bay 302 Ash 533 Laurel Bay 305 Ash 537 Laurel Bay 334 Ash 556 Dahlia 338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 412 Elderberry 625 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 435 Elderberry 661 Camellia 436 Laurel Bay 669 Camellia 490 Laurel Bay 669 Camellia	212 Balsam	503 Laurel Bay
260 Beech Tank 2 523 Laurel Bay 267 Birch 525 Laurel Bay 287 Birch 529 Laurel Bay 302 Ash 533 Laurel Bay 305 Ash 537 Laurel Bay 334 Ash 556 Dahlia 338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 615 Dahlia 412 Elderberry 629 Dahlia 421 Elderberry 629 Dahlia 422 Elderberry 631 Dahlia 423 Elderberry 634 Dahlia 424 Elderberry 634 Dahlia 425 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia	219 Balsam	508 Laurel Bay
267 Birch 525 Laurel Bay 287 Birch 529 Laurel Bay 302 Ash 533 Laurel Bay 305 Ash 537 Laurel Bay 334 Ash 556 Dahlia 338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia	260 Beech Tank 1	510 Laurel Bay
287 Birch 529 Laurel Bay 302 Ash 533 Laurel Bay 305 Ash 537 Laurel Bay 334 Ash 556 Dahlia 338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	260 Beech Tank 2	523 Laurel Bay
302 Ash 533 Laurel Bay 305 Ash 537 Laurel Bay 334 Ash 556 Dahlia 338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 422 Elderberry 631 Dahlia 423 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	267 Birch	525 Laurel Bay
305 Ash 537 Laurel Bay 334 Ash 556 Dahlia 338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 422 Elderberry 631 Dahlia 423 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	287 Birch	529 Laurel Bay
334 Ash 556 Dahlia 338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	302 Ash	533 Laurel Bay
338 Ash Tank 1 557 Dahlia 338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	305 Ash	537 Laurel Bay
338 Ash Tank 2 559 Dahlia 361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 619 Dahlia 414 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	334 Ash	556 Dahlia
361 Aspen 562 Dahlia 371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	338 Ash Tank 1	557 Dahlia
371 Aspen 568 Dahlia 372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	338 Ash Tank 2	559 Dahlia
372 Aspen Tank 1 581 Aster 372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 631 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	361 Aspen	562 Dahlia
372 Aspen Tank 2 582 Aster 375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 631 Dahlia 427 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	371 Aspen	568 Dahlia
375 Aspen 584 Aster 385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	372 Aspen Tank 1	581 Aster
385 Aspen 602 Dahlia 403 Elderberry 607 Dahlia 407 Elderberry 614 Dahlia 411 Elderberry 619 Dahlia 414 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia	372 Aspen Tank 2	582 Aster
403 Elderberry 407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 669 Camellia	375 Aspen	584 Aster
407 Elderberry 614 Dahlia 411 Elderberry 616 Dahlia 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia	385 Aspen	602 Dahlia
411 Elderberry 414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	403 Elderberry	607 Dahlia
414 Elderberry 619 Dahlia 415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia	407 Elderberry	614 Dahlia
415 Elderberry 625 Dahlia 421 Elderberry 629 Dahlia 427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	411 Elderberry	616 Dahlia
421 Elderberry629 Dahlia427 Elderberry631 Dahlia428 Elderberry634 Dahlia431 Elderberry660 Camellia455 Elderberry661 Camellia484 Laurel Bay666 Camellia490 Laurel Bay669 Camellia	414 Elderberry	619 Dahlia
427 Elderberry 631 Dahlia 428 Elderberry 634 Dahlia 431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	415 Elderberry	625 Dahlia
428 Elderberry634 Dahlia431 Elderberry660 Camellia455 Elderberry661 Camellia484 Laurel Bay666 Camellia490 Laurel Bay669 Camellia	421 Elderberry	629 Dahlia
431 Elderberry 660 Camellia 455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	427 Elderberry	631 Dahlia
455 Elderberry 661 Camellia 484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	428 Elderberry	634 Dahlia
484 Laurel Bay 666 Camellia 490 Laurel Bay 669 Camellia	431 Elderberry	660 Camellia
490 Laurel Bay 669 Camellia	455 Elderberry	661 Camellia
·	484 Laurel Bay	666 Camellia
502 Laurel Bay 672 Camellia	490 Laurel Bay	669 Camellia
	502 Laurel Bay	672 Camellia

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

674 Camellia	880 Cobia	
677 Camellia	890 Cobia	
679 Camellia	892 Cobia	
686 Camellia	900 Barracuda	
690 Camellia	906 Barracuda	
698 Abelia	911 Barracuda	
700 Bluebell	912 Barracuda	
704 Bluebell	917 Barracuda	
705 Bluebell	919 Barracuda	
708 Bluebell	928 Albacore	
710 Bluebell	1024 Foxglove	
711 Bluebell	1028 Foxglove	
714 Bluebell	1029 Foxglove	
715 Bluebell	1038 Iris	
726 Bluebell	1049 Gardenia	
728 Bluebell	1079 Heather	
731 Bluebell	1103 Iris	
734 Bluebell	1122 Iris	
759 Althea	1136 Iris	
761 Althea	1173 Bobwhite	
773 Althea	1200 Cardinal	
778 Laurel Bay	1221 Cardinal	
807 Azalea	1238 Dove	
814 Azalea	1241 Dove	
815 Azalea	1242 Dove	
818 Azalea	1248 Dove	
820 Azalea	1262 Dove	
821 Azalea	1265 Dove	
831 Azalea	1267 Dove	
832 Azalea	1289 Eagle	
834 Azalea	1298 Eagle	
835 Azalea	1300 Eagle	
841 Azalea	1303 Eagle	
853 Dolphin	1304 Eagle	
858 Dolphin	1315 Albatross	
869 Cobia	1316 Albatross	
874 Cobia	1320 Albatross	
875 Cobia	1338 Albatross	

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

1340 Albatross			
1342 Albatross			
1344 Cardinal			
1345 Cardinal		*	
1349 Cardinal			
1355 Cardinal			
1366 Cardinal			
1374 Dove	}		
1375 Dove			
1415 Albatross			